A quantitative comparison of regional myocardial motion in mice, rabbits and humans using in-vivo phase contrast CMR
نویسندگان
چکیده
BACKGROUND Genetically manipulated animals like mice or rabbits play an important role in the exploration of human cardiovascular diseases. It is therefore important to identify animal models that closely mimic physiological and pathological human cardiac function. METHODS In-vivo phase contrast cardiovascular magnetic resonance (CMR) was used to measure regional three-directional left ventricular myocardial motion with high temporal resolution in mice (N=18), rabbits (N=8), and humans (N=20). Radial, long-axis, and rotational myocardial velocities were acquired in left ventricular basal, mid-ventricular, and apical short-axis locations. RESULTS Regional analysis revealed different patterns of motion: 1) In humans and rabbits, the apex showed slower radial velocities compared to the base. 2) Significant differences within species were seen in the pattern of long-axis motion. Long-axis velocities during systole were fairly homogeneously distributed in mice, whereas humans showed a dominant component in the lateral wall and rabbits in the base. 3) Rotational velocities and twist showed the most distinct patterns in both temporal evolution and relative contribution of base, mid-ventricle and apex, respectively. Interestingly, a marked difference in rotational behavior during early-systole was found in mice, which exhibited clockwise rotation in all slice locations compared to counter-clockwise rotation in rabbits and humans. CONCLUSIONS Phase contrast CMR revealed subtle, but significantly different regional myocardial motion patterns in mice, rabbits and humans. This finding has to be considered when investigating myocardial motion pattern in small animal models of heart disease.
منابع مشابه
A comprehensive quantitative comparison of myocardial motion in mice, rabbits and humans using phase contrast MRI
Methods Phase contrast MRI [1] was used to measure regional three-directional LV myocardial motion with high temporal resolution in mice (N=18), rabbits (N=8), and humans (N=20). Radial, long-axis, and rotational myocardial velocities were acquired in left ventricular basal, mid-ventricular, and apical short-axis locations (see Table 1 for scan parameters). Positive radial velocities indicate c...
متن کاملNovel insight into the detailed myocardial motion and deformation of the rodent heart using high-resolution phase contrast cardiovascular magnetic resonance
BACKGROUND Phase contrast velocimetry cardiovascular magnetic resonance (PC-CMR) is a powerful and versatile tool allowing assessment of in vivo motion of the myocardium. However, PC-CMR is sensitive to motion related artifacts causing errors that are geometrically systematic, rendering regional analysis of myocardial function challenging. The objective of this study was to establish an optimiz...
متن کاملRegional contrast agent quantification in a mouse model of myocardial infarction using 3D cardiac T1 mapping
BACKGROUND Quantitative relaxation time measurements by cardiovascular magnetic resonance (CMR) are of paramount importance in contrast-enhanced studies of experimental myocardial infarction. First, compared to qualitative measurements based on signal intensity changes, they are less sensitive to specific parameter choices, thereby allowing for better comparison between different studies or dur...
متن کاملEffects of gadolinium contrast agent on aortic blood flow and myocardial strain measurements by phase-contrast cardiovascular magnetic resonance
BACKGROUND Quantitative blood flow and aspects of regional myocardial function such as myocardial displacement and strain can be measured using phase-contrast cardiovascular magnetic resonance (PC-CMR). Since a gadolinium-based contrast agent is often used to measure myocardial infarct size, we sought to determine whether the contrast agent affects measurements of aortic flow and myocardial dis...
متن کاملDetermination of normal ranges of regional and global phase parameters using gated myocardial perfusion imaging with Cedars-Sinai’s QGS software
Introduction: Myocardial perfusion imaging using gated SPECT and phase analysis is an effective tool in evaluation of mechanical dyssynchrony. The purpose of this study was to determine the normal ranges of global and regional phase parameters. Methods: A total of 100 patients with normal resting and stress electrocardiograms, low pretest likelihood for c...
متن کامل